ನೆಲದ ’ತೂಕ’

ಪ್ರಶಾಂತ ಸೊರಟೂರ.

EarthMass

ಕಳೆದ ಬರಹವೊಂದರಲ್ಲಿ ನೆಲದ ದುಂಡಗಲವನ್ನು (diameter) ಮೊಟ್ಟಮೊದಲ ಬಾರಿಗೆ ಅಳೆದವರಾರು ಮತ್ತು ಹೇಗೆ ಅಳೆದರು ಅಂತಾ ತಿಳಿದುಕೊಂಡೆವು. ಬಾನರಿಮೆ ಇಲ್ಲವೇ ಅದಕ್ಕೆ ಹೊಂದಿಕೊಂಡಂತ ವಿಶಯಗಳನ್ನು ಓದುವಾಗ ನೆಲ, ನೇಸರ, ಮಂಗಳ ಮುಂತಾದವುಗಳ ತೂಕ ’ಇಂತಿಶ್ಟು’ ಅಂತಾ ಓದಿದೊಡನೆ, ಇಂತ ದೊಡ್ಡದಾದ ವಸ್ತುಗಳನ್ನು ಹೇಗೆ ತೂಗುತ್ತಾರೆ ಅನ್ನುವಂತ ಕೇಳ್ವಿಯೊಂದು ನಿಮ್ಮ ತಲೆಗೆ ಹೊಕ್ಕಿರಬಹುದು.

ಅರಿಮೆಯ ಮೇಲ್ಮೆ ಇಂತಲ್ಲೇ ಅಡಗಿರುವುದು, ನೇರವಾಗಿ ಕಂಡುಹಿಡಿಯಲು ಆಗದಂತಹ ವಿಶಯಗಳನ್ನು ನೇರವಲ್ಲದ ಹೊಲಬು (method) ಬಳಸಿ ಎಣಿಕೆಹಾಕಬಹುದು. ಬನ್ನಿ, ಈ ಬರಹದಲ್ಲಿ ನೆಲದ ತೂಕವನ್ನು ಹೇಗೆ ನೇರವಾಗಿ ತೂಗದೆ, ಬೇರೊಂದು ಗೊತ್ತಿರುವ ಅರಿಮೆಯ ನಂಟುಗಳಿಂದ ಎಣಿಕೆಹಾಕಬಹುದು ಅಂತಾ ತಿಳಿದುಕೊಳ್ಳೋಣ.

ತೂಕದತ್ತ ಮುಂದುವರೆಯುವ ಮುನ್ನ, ಹಿಂದಿನ ಬರಹವೊಂದರಲ್ಲಿ ತಿಳಿಸಿದಂತೆ ನಮ್ಮ ದಿನದ ಬದುಕಿನಲ್ಲಿ ರಾಶಿಯನ್ನೇ ತೂಕ ಅನ್ನುವ ಹುರುಳಿನಿಂದ ನಾವು ಬಳಸುತ್ತೇವೆ. ಆದರೆ ಅರಿಮೆಯ ಕಣ್ಣಿನಲ್ಲಿ ತೂಕ (weight) ಮತ್ತು ರಾಶಿಗಳಲ್ಲಿ (mass) ಬೇರ‍್ಮೆಯಿದೆ.

ವಸ್ತು ಎಶ್ಟು ’ಅಡಕವಾಗಿದೆ’ ಅನ್ನುವುದನ್ನು ರಾಶಿ (mass) ಅಂತಾ ಮತ್ತು ವಸ್ತು ಬೇರೊಂದರ ನೆಲೆಯಲ್ಲಿ ಎಶ್ಟು ’ಸೆಳೆಯಲ್ಪಡುತ್ತದೆ’ ಅನ್ನುವುದನ್ನು ತೂಕ (weight) ಅಂತಾ ಕರೆಯುತ್ತಾರೆ. ರಾಶಿಯನ್ನು ಕೆಜಿ (kg) ಎಂಬ ಅಳತೆಗೋಲಿನಿಂದ ಅಳೆದರೆ ತೂಕಕ್ಕೆ ನ್ಯೂಟನ್ (N) ಎಂಬ ಅಳತೆಗೋಲು ಬಳಸಲಾಗುತ್ತದೆ.

ಎತ್ತುಗೆಗೆ: ನೆಲದ ಮೇಲೆ ವಸ್ತುವೊಂದರ ರಾಶಿ 70 kg ಆಗಿದ್ದರೆ ಚಂದ್ರನ ಮೇಲೂ ಅದರ ರಾಶಿ ಅಶ್ಟೇ ಆಗಿರುತ್ತದೆ ಆದರೆ ಅದೇ ವಸ್ತುವಿನ ತೂಕ ನೆಲದ ಮೇಲೆ 70 x 9.81 = 686.7 N (ನ್ಯೂಟನ್) ಆಗಿದ್ದರೆ, ಚಂದ್ರನ ಮೇಲೆ ಅದು 70 x 1.62 = 113.4 N ಆಗಿರುತ್ತದೆ.

ಇದಕ್ಕೆ ಕಾರಣವೆಂದರೆ, ಇಂತಿಶ್ಟು ಅಡಕವಾಗಿರುವ (ರಾಶಿ) ವಸ್ತುವನ್ನು ನೆಲವು ತನ್ನೆಡೆಗೆ ಹೆಚ್ಚು ಸೆಳೆದರೆ, ಚಂದ್ರನಿಗೆ ಆ ಸೆಳೆಯುವ ಕಸುವು ನೆಲಕ್ಕಿಂತ ಸುಮಾರು 83% ಕಡಿಮೆಯಿದೆ. ಅಂದರೆ ನೆಲದ ಮೇಲೆ ಗಟ್ಟಿಯಾಗಿ ನೆಲೆಯೂರಿರುವ ವಸ್ತು, ಚಂದ್ರನ ಮೇಲೆ ಕಡಿಮೆ ಸೆಳೆತದಿಂದಾಗಿ ತೇಲಾಡಬಹುದು.

mass_weight

(ರಾಶಿ ಮತ್ತು ತೂಕದ ಬೇರ‍್ಮೆ ತೋರಿಸುತ್ತಿರುವ ತಿಟ್ಟ)

ಇದರಿಂದ ಇನ್ನೊಂದು ತಿಳಿದುಕೊಳ್ಳುವ ವಿಶಯವೆಂದರೆ ವಸ್ತುವಿನ ತೂಕ ಇಂತಿಶ್ಟಿದೆ ಎಂದರೆ ಅದನ್ನು ಯಾವ ಸೆಳೆತದ ನೆಲೆಯಲ್ಲಿ (ನೆಲ, ಚಂದಿರ, ನೇಸರ ಮುಂತಾದವು) ಅಳೆಯಲಾಯಿತು ಅನ್ನುವುದನ್ನೂ ತಿಳಿಸಬೇಕಾಗುತ್ತದೆ ಆದರೆ ರಾಶಿ ಹಾಗಲ್ಲ, ಎಲ್ಲೆಡೆಯೂ ಅದು ಒಂದೇ ಆಗಿರುತ್ತದೆ. (ಯಾರಾದರೂ ನನ್ನ ತೂಕ ಇಂತಿಶ್ಟಿದೆ ಅಂದರೆ ಎಲ್ಲಿ ಅಳೆದದ್ದು ನೆಲದಲ್ಲೋ, ಚಂದಿರನಲ್ಲೋ ಅಂತಾ ಕೇಳುವುದು ಅರಿಮೆಯ ಕಣ್ಣಲ್ಲಿ ಸರಿಯಾದ ಕೇಳ್ವಿಯೇ)

ಅರಿಮೆಯ ಈ ಹಿನ್ನೆಲೆಯಲ್ಲಿ ನೆಲದ ’ತೂಕ’ (weight) ಕಂಡುಹಿಡಿಯುವ ಬಗೆಯನ್ನು ತಿಳಿಯಲು ಹೊರಟಿರುವ ನಾವು ಅದು ನೆಲದ ’ರಾಶಿ’ (mass) ಅಂತಾ ಹುರುಳಿಸಿಕೊಳ್ಳಬೇಕಾಗುತ್ತದೆ. ಹಾಗಾಗಿ ಬರಹದ ಮುಂದಿನ ಕುರುಳುಗಳಲ್ಲಿ ’ತೂಕ’ ಅನ್ನುವ ಬದಲಾಗಿ ’ರಾಶಿ’ ಅಂತಾ ಬಳಸಲಾಗಿದೆ.

ನಿಮಗೆ ಶಾಲೆಯ ಪಾಟವೊಂದರಲ್ಲಿ ಈ ಆಗುಹವನ್ನು ಓದಿದ ನೆನಪಿರಬಹುದು,

ಮರವೊಂದರಿಂದ ಬೇರ‍್ಪಟ್ಟ ಸೇಬಿನ ಹಣ್ಣು ನೆಟ್ಟಗೆ ನೆಲಕ್ಕೇ ಏಕೆ ಬಿದ್ದಿತು? ಅದ್ಯಾಕೆ ಮೇಲೆ ಹಾರಲಿಲ್ಲ? ಅನ್ನುವಂತ ಕೇಳ್ವಿಗಳು ಆ ಮರದ ಕೆಳಗೆ ಕುಳಿತಿದ್ದ ಹುಡುಗ ಅಯ್ಸಾಕ್‍ನನ್ನು ಕಾಡತೊಡಗಿದವು. ಮುಂದೆ ಆ ಕುತೂಹಲಗಳೇ ಜಗತ್ತಿನ ಅರಿಮೆಯ ನಾಳೆಗಳನ್ನು ಬೆಳಗಿಸಿದವು. ಅಯ್ಸಾಕ್ ನ್ಯೂಟನ್ನರ ತಿಳಿವು, ಕಟ್ಟಲೆಗಳು ಹಲವು ವಿಶಯಗಳಿಗೆ ಅಡಿಪಾಯವಾದವು.

ನೆಲದ ರಾಶಿಯನ್ನೂ ಅಯ್ಸಾಕ್ ನ್ಯೂಟನ್ನರು ತಿಳಿಸಿಕೊಟ್ಟ ’ಕದಲಿಕೆಯ ಕಟ್ಟಲೆ’ (law of motion) ಮತ್ತು ’ಹಿರಿಸೆಳೆತದ ಕಟ್ಟಲೆ’ (law of gravitation) ಬಳಸಿ ಎಣಿಕೆಹಾಕಲಾಗುತ್ತದೆ. ನ್ಯೂಟನ್ನರು ತೋರಿಸಿಕೊಟ್ಟ ಕಟ್ಟಲೆಗಳು ಹೀಗಿವೆ,

ಅ) ಕದಲಿಕೆಯ ಕಟ್ಟಲೆ (law of motion):

ಒಂದು ವಸ್ತುವಿನ ಮೇಲೆ ಬೀಳುವ ಕಸುವು, ಆ ವಸ್ತುವಿನ ರಾಶಿ (mass) ಮತ್ತು ಅದರ ವೇಗಮಾರ‍್ಪಿನ (acceleration) ಗುಣಿತಕ್ಕೆ ಸಾಟಿಯಾಗಿರುತ್ತದೆ.
F = m x a

ಇಲ್ಲಿ, F = ಕಸುವು, m = ವಸ್ತುವಿನ ರಾಶಿ, a = ವೇಗಮಾರ‍್ಪು

ಆ) ಹಿರಿಸೆಳೆತದ ಕಟ್ಟಲೆ (law of gravitation):

ಎರಡು ವಸ್ತುಗಳ ನಡುವೆ ಅವುಗಳ ರಾಶಿಗೆ ತಕ್ಕಂತೆ ಮತ್ತು ಅವುಗಳ ನಡುವಣಗಳ ದೂರಕ್ಕೆ ಎದುರಾಗಿ ಸೆಳೆತದ ಕಸುವಿರುತ್ತದೆ, ಅದನ್ನು ಹಿರಿಸೆಳೆತ (gravitation) ಎನ್ನುತ್ತಾರೆ. (ಹಿರಿಸೆಳೆತ = ರಾಶಿಯಲ್ಲಿ ಹಿರಿದಾದ ವಸ್ತುವು ಕಿರಿದಾದ ವಸ್ತುವನ್ನು ತನ್ನೆಡೆಗೆ ಸೆಳೆಯುವ ಕಸುವು)

F = G (m1 x m2 / r2)

ಇಲ್ಲಿ, F = ವಸ್ತುಗಳ ನಡುವಿರುವ ಹಿರಿಸೆಳೆತದ ಕಸುವು, m1, m2 = ವಸ್ತುಗಳ ರಾಶಿಗಳು, r = ವಸ್ತುಗಳ ನಡುವಣದ ದೂರ, G = ನೆಲೆವೆ (constant)

ಈಗ, ಕಂಡುಹಿಡಿಯಲು ಹೊರಟಿರುವ ನೆಲದ ರಾಶಿ ‘M’ ಮತ್ತು ನೆಲದ ಮೇಲ್ಮಯಲ್ಲಿರುವ ವಸ್ತುವೊಂದರ ರಾಶಿ ’m’ ಅಂತಾ ತಿಳಿದುಕೊಳ್ಳೋಣ. ಮೇಲಿನ ನ್ಯೂಟನ್ನರ ಕಟ್ಟಲೆಗಳನ್ನು ಹೀಗೆ ಹೊಂದಿಸಿಕೊಳ್ಳಬಹುದು,

F = m x a = G (M x m / r2)
>> M = (a x r2)/G

ಈ ಮೇಲಿನ ನಂಟಿನಲ್ಲಿ ನಮಗೆ ಕೆಳಗಿನವುಗಳು ಗೊತ್ತಿರುವಂತವು,
i) a = g = 9.81 m/sec2

ನೆಲದ ಮೇಲ್ಮೆಯ ಮೇಲೆ ನೆಲಸೆಳೆತಕ್ಕೆ ಒಳಪಟ್ಟ ವಸ್ತುವೊಂದರ ವೇಗವು ಪ್ರತಿ ಸೆಕೆಂಡಿಗೆ 9.81 ಮೀಟರನಶ್ಟು ಮಾರ‍್ಪಡುತ್ತದೆ  (acceleration due to gravity)

ii) G = 6.67 x 10-11  m3/(kg sec2)

ಈ ಬೆಲೆಯನ್ನು ಕೆವೆಂಡಿಶ್ ಹೆನ್ರಿ ತಮ್ಮ ಅರಕೆಯಿಂದ ಕಂಡುಹಿಡಿದಿದ್ದರು

iii) r = 6378000‍ ಮೀಟರ್ = ನೆಲ ಮತ್ತು ನೆಲದ ಮೇಲ್ಮಯ್ ಮೇಲಿರುವ ವಸ್ತುವಿನ ನಡುವಣದ ದೂರ = ನೆಲದ ದುಂಡಿ (radius)

 ಹಿಂದಿನ ಬರಹದಲ್ಲಿ ಇದನ್ನು ಹೇಗೆ ಅಳೆಯಲಾಯಿತು ಅಂತಾ ತಿಳಿದುಕೊಂಡಿದ್ದೆವು (ದುಂಡಿ=ದುಂಡಗಲ/2, radius = diameter / 2)

Earth_gravity

ಆದುದರಿಂದ,
ನೆಲದ ರಾಶಿ = M = (a x r2)/G = (9.81 x 6378000‍ 2) / 6.67 x 10-11

= 5.98 x 1024 Kg

ಗೊತ್ತಾಯಿತಲ್ಲ, ನೆಲದ ತೂಕವನ್ನು (ರಾಶಿಯನ್ನು) ತಕ್ಕಡಿಯಲ್ಲಿದೇ ಹೇಗೆ ಕಂಡುಹಿಡಿಯಬಹುದಂತ.

(ತಿಳಿವಿನ ಮತ್ತು ತಿಟ್ಟಗಳ ಸೆಲೆಗಳು: enchantedlearning, wikipedia.org, bbc.co.uk, cnx.org )



Categories: ಅರಿಮೆ

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

9 replies

  1. ಪ್ರಶಾಂತ ಸೊರಟೂರರವರೇ, ಭೂಮಿಯ ತೂಕವನ್ನು ಗಣಿತದ ಸೂತ್ರಗಳ ಮೂಲಕ ಕಂಡುಹಿಡಿಯುವ ಲೇಖನ ತುಂಬಾ ಚೆನ್ನಾಗಿದೆ.

  2. ಲೇಖನ ತುಂಬಾ ಚೆನ್ನಾಗಿದೆ ..
    ಕೆಲವೊಂದು ಕನ್ನಡ ಪದಗಳ ಅರ್ಥ ತಿಳಿಸುವಿರಾ ?
    ಅರಕೆ? ತಿಟ್ಟ ? ಕಸುವು ? ಎತ್ತುಗೆಗೆ ?

  3. ಮಹೇಶ್ ಮತ್ತು khadyoth ಅವರೇ ನಿಮ್ಮ ಮೆಚ್ಚುಗೆಯ ಮಾತುಗಳಿಗೆ ನನ್ನಿ/ದನ್ಯವಾದಗಳು.
    >> khadyoth,
    ಅರಕೆ = research, ತಿಟ್ಟ=picture, ಕಸುವು=force ಎತ್ತುಗೆ= example

Trackbacks

  1. ’ಕಪ್ಪುಕುಳಿ’ ಇಲ್ಲವೆಂದ ಸ್ಟಿಪನ್ ಹಾಕಿಂಗ್! | ಹೊನಲು
  2. ’ಕಪ್ಪುಕುಳಿ’ ಇಲ್ಲವೆಂದ ಸ್ಟೀಪನ್ ಹಾಕಿಂಗ್! | ಹೊನಲು
  3. ’ಕಪ್ಪುಕುಳಿ’ ಇಲ್ಲವೆಂದ ಸ್ಟೀಪನ್ ಹಾಕಿಂಗ್! | ಹೊನಲು
  4. ನೆಲದಾಳದಲ್ಲಿ ಹೊಸ ನೀರು | ಹೊನಲು
  5. ಆರ‍್ಕಿಮಿಡೀಸ್‍ರೂ…ಹೊನ್ನಮುಡಿಯೂ… | ಹೊನಲು
  6. ನಿಲ್ಲಲಶ್ಟು ನೆಲವನ್ನು ಕೊಟ್ಟರೆ ಜಗತ್ತನ್ನೇ ಎತ್ತುವೇ | ಹೊನಲು

ಅನಿಸಿಕೆ ಬರೆಯಿರಿ

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s